Large migration – lessons learned

Large migration – lessons learned

I was recently in charge of a large migration. It all went fine but not without hickups that typically are connected to moving large amounts of data to dataverse. We were using SSIS with Kingswaysoft and ended up using a local SQL database as staging database too. This article will discuss the different lessons learned and give some concrete tips when doing similar migrations.

One of my more popular articles is the article that describes how to optimize the writing of data to Dataverse/CDS. If you are working with migration of large amounts of data, as I will be describing here, I do suggest you have a look at it: https://powerplatform.se/fast-data-management-in-a-limited-cds-world/. I will not discuss those concepts in any detail here but we did use all aspects mentioned in that article.

I recently was in charge of a migration which used CSV-file exports from an old German system (with German field names!) which had many millions of records, in both large tables like “Contact” and “Sales Order”. However, the system we migrated from had a completely different data modell than the one used in Dynamics. For instance, each row describing a “Flight” had to be divided into two rows, one for the outgoing flight and one for the homecoming flight, in the order detail table. We also had to create a lot of related data which was referenced from the “Flight” table, for example location, agent and brand. In other words, there was quite a lot of heavy transformations going on and a lot of logic involved, such as change format on the old data to match the Dataverse model and apply rules to resolve old issues, such as bugs.

Initially we only got a quite small subset of the entire database load, and we started our migration journey by creating all the migration logic in SSIS (which facilitates the script and makes updates easy to handle). The script did include some functions that “joined” rather large tables, both from the CSV files but also related data fetched from the Dataverse based on primary and alternate keys. I was clear with the customer from the very beginning that I wanted a full export with the same amount of data that we could expect in the final migration, mainly for the opportunity to stress-test the SSIS script before the migration to the production environment took place and after a while we got the big files…

…And this was when the excrement hit the wind generator. The afore mentioned lookups just stalled forever. We noted that having a lookup (using Kingswaysoft Premium Lookup) works fine on a computer with 16 GB memory up to a few 100k of records. However, once the data starts reaching 500k and more, it just stalls forever (and don’t even get me start on the sort tools…). Not sure exactly if it would have been possible to fix this by adding more cores and memory, we didn’t try. We hence had to rewrite the script and implement a staging database instead. What we found, is that a dataflow with 1M+ records of lookups will be 100x faster if you import the data into SQL and do a join instead. Lookups still works for smaller tables and I am not against them per se, as they do make the migration simpler. Adding more tables to a migration database will increase complexity, and if you want to add a column in a table, that table do not only has to be added to one SSIS dataflow, but probably a few more. And you also must do an ALTER TABLE in SQL to add the field there too. It is therefore important to have a good mapping set before you start to create the script. And keep the complexity as simple as possible. You can also use SQL tasks in the migration script to update the tables straight after you read them to the staging database per automation, if you need to apply some kind of rules after the read to the staging database, and find it easiest with an SQL query.

The method we used for developing the migration was to first make a “skeleton” migration, based on the target data model. In other words, we started with trying to get a few of the easiest fields, not all, from all tables that was to be involved in the migration – maybe it could be called – model-first-approach, instead of starting with one table, completing this and then moving on to the next. The advantage of the model-first-approach is that you quite early can start some tests on the data, for instance setting up some quantitative test by checking in the source system for the quantities of contacts and then comparing these quantities to the target. The tests can typically be done by other people than the people building the migration scripts and hence this methods scales a lot better than table-by-table-approach. It is also possible for several devs to work in parallell with different tasks. Typically the more senior will build the skeleton and then more junior can add fields by field to each respective table. A negative aspect of this approach is that it requires a lot of re-loads (keep in mind that this was a first migration, so there are no prior data in the Dataverse that we needed to consider) and re-mapping. And it may be easier to “fall out of” the structure, if you just need “to add a little bit here and there”. It is however indeed hard to go table for table, especially with related data. If you already have a lot of live data, you should think about a way to easy identify the migrated data so you can bulk-deleted. And do not forget to engage the client early with raised questions and the mapping to make sure you have understood everything correctly and avoid unnecessary errors.

We also tried to create unique row identities that strictly was based on the source data. This is very useful as that allows for delta-migration, or to continue where we left off in case of a problem. Let’s say for instance that you want to migrate 3 million contacts. If, after 2.1 Million contacts the script breaks for some reason, it is good to be able to continue at 2.1M instead of restarting. In this case we didn’t use modifiedon-date to be able to do a full delta migration logic but it is certainly possible. For this we used the cache-transforms, easily fetch the already migrated data (if any) with the unique and sort out the already migrated data if it matched the key.  

Another pattern that we used was that, after creating a specific record, like contact, we reimported the recordid (in this case contactid) together with the legacyid. This allowed us to directly join with this table when later adding tables with dependencies like lookups towards the contact table, could be joined with this mapping table so that we directly got the contactid when querying the related table.

Tips

  • When migrating from CSV, import them directly as source tables in the staging database. That way, in case you need to fix something, you have a good reference for quantities.
  • Get an example of the full data load as early as possible. A script that works for a subset might not work at all for the full dataload as was the case for us.
  • Automate as much as possible. Don’t use any hardcoded values that are environent specific, such as transactioncurrencyid, but rather read these to small tables or to SSIS variables. Use SQL Truncate to remove all data quickly in a table, and make this part of the SSIS script as an SQL task at the appropriate stage.
  • Always check the quantities. How many rows in source data, how many rows after a match and check if it differs so you very early can identify bugs in your script that might be the reason for dropping rows. For example, you might use a JOIN when you should use an OUTER JOIN. Always check the total number and see if it is what you expect. Watch out for duplicates, and always check so your unique IDs (if you got some from the source data) really are unique and not NULL. Do note that if you have duplicates, that you join on, that will create multiplications. Hence it is possible, after a select-statement with joins to get more records that the initial table.
  • Define reasonable goals and test cases for the migration. Some examples:
    • 99.9% of all contacts to be migrated correctly. With 1 M records, this means that anything lower than 1000 incorrect migrated contacts/missed, is defined as still ok.
    • Randomly pick 10-20 records on a base level, like 20 customer, and then compare these in the UAT/Test environment to the source system, as it is seen there. This needs to be done by the business people, so that they can have a say if the migrated data is fine.
    • Select some filters, like “all customers in Munich” and some other segmentations and compare source system to destination. If there are large amounts of errors, backtrack to the staging database to see where you did loose some records or created too many (not uncommon).
  • Complete entire transformation to destination tables in the staging db. Then you can move directly from there to dataverse. This is particularly important when moving large quantities of data when managing the data in SSIS can be problematic.
  • Make sure to have unique identifiers on all tables that preferably can be regenerated from the data. Store these in some “Legacy ID” field. This allows for delta-migration logic, ie. where part of the data is migrated and then the rest later. If you have some issues during one of the dataflows, and it stops on 3 230 234-th record of 6 M, you can continue from there and you don’t have to redo it all. If there is no decent way of getting a legacy id, you can generate classic row numbers by creating an identity column. This will make the migration utilize this, but only within that particular instance and load of the staging db. Hence you must be careful everytime you reload the database.
  • Utilize the backup-restore functionality of the dataverse environments. Do note that you can make manual backups just before you start migration. If you have a production environment, this will need to be converted to a sandbox environment before you can restore to it. Another option I got from a colleague was to use 3 different environments, with temporary names, and then just rename the final one when done.
  • Once you have transfered an entire table to the source system, it is typically very useful to have a mapping table, with just the table record id and the legacy id. So for instance, after migrating Contact, read all contacts from dataverse with the contactid and the legacy id. That way, when later migrating “salesorders”, which identify the customer by legacy id, it is easy to just join with this table to get the contactid.
  • Production environments are faster. Fastest is to ask Microsoft Support to relax throttles on all environments that are used during migration.
  • Use a VM that is located geographically (or really with low latency and high throughput) to where the environments are hosted. This is a very common recommendation by Kingswaysoft too.
  • The settings for number of threads and batch size needs to be set based on some factors, namely:
    • Production/Sandbox
    • Have throttles been relaxed
    • Size of payload (ie how many columns) – larger payload -> smaller batches.
    • Type of action – creates are faster than deletes. Updates are in-between.

I hope these tips can help you along. If you have any comments or you have other experiences in this subject, don’t hesitate to leave a comment.

During this migration and the writing of this article, I had excellent help from my highly intelligent colleague Ebba Linnea Nilsson and it is certainly true that two heads are better than one, and the end result is often a lot better than just the sum of two people. So for my final recommendation, make sure to have a good colleague with you to help you out, as you most probably will run into some issues and having someone to discuss with is really great!

Good luck on your migration challenge!

Entitlements are not throttling

Entitlements are not throttling

Should a five user organization be entitled to the same amount of compute as a 5 000 user organization?

Entitlements are the limitations that Microsoft have set on the platform that are based on which type of license each user has. This is not the same as the API Service limits which are much more liberal. The entitlements have not yet been fully enforced as the reporting capabilities of the platform have not been rolled out fully yet. But they will. With this blog post I attempt to give my perspective on entitlements on the Power Platform and Dynamics 365 (CRM part).

My previous post was about API Service limits which are commonly referred to as the throttling limits of the platform. The entitlements limits (and here) have another part in the Microsoft docs that go into these a bit deeper. I’d first like to go into why there are two different “protections” or limitations.

The API Service limits are there to protect the platform from noisy neighbours. Some of us, that have been around since the earlier days of Dynamics 365/CRM online remember that the performance used to be rather shaky. This could often be due to the fact that some other instance on the same hardware your instance was hosted on, was being slammed with massive amounts of requests, like during a migration. To make sure that this “noisy neighbour” problem doesn’t occur, the API-limits have been put in place and since they have, things have been a lot better so they do seem to work.

The Entitlements are there for another reason. Let’s say you buy two (2) Dynamics 365 Sales users and then use integrations with a custom built front end for B2C purposes with one of those users (or an app user), and, still within the limits of the API Service limits, hammer the API:s from day to night with an amazing amount of requests. The B2C aspect would be covered from a licensing perspective in what was previously called “external connector” license and is nowdays included in the normal license. However, the amount of compute that the instance is utilizing is way above what you are paying for. This is the reason why Microsoft have created the entitlements, as far as I know anyway. And I think it only makes sense that there is some kind of reasonable proportionality to that.

To quote the Microsoft docs page: “These limits represent the number of requests users are entitled to make each day. The allocated limit depends on the type of license assigned to each user.

What is a request?
The first question is then, what is a request? Previously we were told, that a batch request (ExecuteMultiple) was one (1) request but that has since changed and is now considered to all the subparts. I would even think that a batch request has the extra overhead of the batch itself. Hence, a batch request with 10 creates, will actually be counted as 11 requests; 1 for the batch, and 10 for the creates. The exact definitions are not disclosed but we get a rather good description from the docs with this paragraph, where I have highlighted some interesting parts:

“For Dataverse, API requests include all data operations that interact with table rows where rows are created, retrieved, updated, or deleted (CRUD). Special operations such as share and assign are included because they are considered updates. These requests can be from any client or application and using any endpoint. These include, but are not limited to, operations performed by plug-ins, async workflows, custom controls, and $batch (ExecuteMultiple) operations. There are a small set of system internal operations that are excluded, like login, sign out, and system metadata operations.”

The important takeaway here is hence that you cannot create a workaround by using a plugin and using the internal context pseudo-api to do the calls, as these are counted as well. Difference might be that they are done in the context of a specific user and that user has a rather large entitlement, which might hence “flatten the curve” so to speak. An interesting aspect, though is the exception to this rule:

“Power Platform API request allocations include use of Power Automate, AI Builder, and Connector APIs. All requests through a connector that result in a Dataverse request will represent 1 Power Platform request.”

This strongly indicates that Microsoft wants us to use the Power Platform tools and that these should not at least have additional costs. There are, however, still some inconsistencies in this area that I really hope that they fix, such as:

  • Microsoft supplied integrations in ADF
  • Integrations to Dynamics 365 Finance & Operations
  • Dynamics 365 Business Central
  • Exports to ADLS
  • Data Export Service

The latter two can be really heavy on the API:s if you have an enterprise system or a B2C system. I work with a customer which currently have a database of >400 GB which uses Data Export service and the amount of notifications on the Data Export Service just for Contacts for a year often exceed the hundreds of millions.

Other areas which are not mentioned but which I think are included are addon first-party apps like Customer Insight (Sales Insights) which actually uses a ADLS in the background (not that you can actually access it). I have heard stories of support tickets where Microsoft support have blamed the API Service protection for hitting the ceiling when it was Sales Insight that caused it, which would indicate that these are actually counted. I think the intention is to include all of these so that the license for these cover the API entitlements. I just wish they would fix the gaps as customers are being affected.

Entitlement telemetry might not be the same as API Service protection telemetry
That actually brings up another interesting aspect. The measurements that are used for the API Service protections are probably NOT the same as the measurements that are used for entitlements, but this is based on my personal hunch, and not any kind of facts. Mainly based on the assumption that I think that the areas that are excluded from entitlement measures above, probably are not excluded from the API Service protection.

Another definition of request!?
On this page there is another definition of what a request is that is different from the one above. I believe this is older than the one mentioned above, as it uses the term “CDS” which has been replaced by dataverse now. I am not sure though as this page last change is dated on the second of feb 2021 while the other the 5:th of March 2020. The main difference is that this does not make the exception mentioned in the article above, hence every call through a connector, every successful or failed call in Power Automate will be counted as one request. Hopefully Microsoft will clear this up soon.

Entitlements per user
At this link you can find the specific entitlements per license. They are all measured on a 24 h period and range from 20 000 for the full enterprise versions of Dynamics 365 to Power Apps per app plan which get 1000 requests.

Entitlements for non-licensed users, which mainly will be application registrations/application users are fixed per tennant based on the highest licensed purchased on the tennant. This means the following pooled included non-licensed entitlements.

  • 1 Sales Enterprise -> 100 000
  • 1 Sales Professional -> 50 000
  • 1 Power Apps license -> 25 000
  • 1 Sales Enterprise, 1000 Power Apps -> 100 000
  • 10 000 Sales Enterprise, 10 000 Power Apps -> 100 000

The important note here is that this does not scale at all, but is fixed. And if you plan to do some integrations with a Power Apps only tennant, you’d be wise to buy at least one Dynamics 365 Enterprise, just to get the non-licensed user entitlements, as the Sales Enterprise is around $95 and each additional 10 000 is $50, which means that the saving to get to a 100 000 calls / 24h is:

50*(100 000 – 20 000)/10 000-95= 400 – 95 = $305/month

Buying extra capacity
It is also possible to buy extra API capacity. You can read more about this in the Licensing Guide for the Power Platform. I am not able to find a current price for this at this time, but the list price was previously set at $50 (per 10 000 for 24h). These are then to be allocated to the users as you wish.

Overshooting
Users will not be blocked from using apps for occasional and reasonable overages at this point of time.
What will happen when or if you overshoot? A very important question. Most organizations will at some time do this, most probably during migration of data from the old systems. The statement from Microsoft above, especially the highlighted “at this point of time.” is rather omnious. It does indicate that at some time the hammer will come down. But at this time it won’t, admins will be harassed with emails about overshooting and just as with overshooting data capacity, they might start with blocking some features when you are overshooting. It is mentioned in one of the articles in the FAQ that after the transition period they will start blocking. So that will be a real fact unless they change their mind on that.

My very strong advice, is hence that all organizations that are not compliant need to start looking at this as soon as possible. I have some tips on what you can do further down in this article. Please refer to these and feel free to leave a comment if you have questions on the subject not answered here.

ISV Bundling
There are many ISV:s which export rather large amounts of data. The first ones that come to mind are the Marketing Automation products like Adobe Marketing, Click Dimensions, Dot Digital and more. These all synchronize contacts, marketinglists and marketinglistmembers, at least, which for larger installations can be quite large datasets. I do think it would be advantageous if these ISV:s could include the API Entitlements that are required, or if they are billed by Microsoft to the ISV which in turn bills the customer with a surcharge. At the very least Microsoft have to take ISV:s into the equation here as they are an essential part of the ecosystem, especially from the customer perspective.

Tips on how to handle future entitlement enforcement

  1. Start by using the PPAC to get an overview of how your situation looks even though you might not get an exact picture.
  2. Consider the overhead of batching. There can be performance advantages to batching as mentioned in my previous article. But there needs to be
  3. Consider “outsourcing large datasets” to ADLS – although the ADLS export also uses API-calls.
  4. Maybe not a problem if short term – for now
  5. Consider using official connectors or Power Automate instead (although that might cause costs in itself)
  6. If building Power App licens based solutions and you have heavy integrations, buy one Dynamics 365 Enterprise license.
  7. If possible impersonate the data load over all the users. This can be done with plugins and synchronous workflows for instance. Patterns that can be used in this case can be staging tables in dataverse where the owner is set and then a plugin is triggered that slices the row into many pieces as the owner of the import record. I am not sure if impersonation using the API will have any effect on this. That needs to be investigated. If it can be used to spread the load, that would be a good pattern to use.
  8. Refactor inefficient code. Depending on implementation maybe increase use of caching or other techniques to reduce the amount of requests. Make sure you have skilled Power Platform/Dynamics 365 developers working with development as knowing how to do this very particular to this platform.

Microsoft representatives, locally in Sweden anyway, are saying to our customers and potential customers that they need not worry about this. I find that message a bit mixed with what I read here. On the other hand I think this will be a very rough change for many organizations. If your organization will be very negativly affected by this and you feel that you are still paying “fairly” for your part, then I suggest you contact Microsoft and describe your business scenario in detail. If you need help with who to contact you can always start with the people who have written the articles who you can ask to forward the articles to the right people, use your local user group or ask some local MVP for help as they often have contacts directly with the product group (and many other experts do too).

Good luck and do leave a comment or share this if you like it!

Top Table Usage in PPAC

Top Table Usage in PPAC

Top Ten Table usage is back from being lost when Organizational Insights was discontinued. A bit tricky to find so check out the video. Awesome tool when trying to reduce the size of large instances, especially important now that the prices per GB are going up to $40/GB (subject to you license agreement).

API per user limits – The good, the bad and the ugly

API per user limits – The good, the bad and the ugly

(Updated) Microsoft recently released some throttling that have been causing some stir in the community, especially since the latest throttle, the concurrency throttling, was not very openly announced, some partners and customers were hit rather hard by it as it affected their abilities to manage large dataloads in the system.

Now Microsoft have announce another API based limitation which is based on the users and the type of licenses the have. You can read some about it here if you like. This article will discuss what this means and my personal view of the good, the bad and the ugly of it.

First of all we need to understand what it is. It is a API limit that will be set per user and based on the type of license that the user is allocated. The highest is if you have a Dynamics 365 App user license, like Sales, Customer Service or similar, which will give you 20 000 requests per 24 hours. The lowest is a Power App – Per App license which will give you 1 000 requests per 24 hours. Note that these are connected to the user and not summed/aggregated to the instance level (allthough I would think that would be a good idea). Well, really, the lowest of them all are Application, Non-interactive or admin-users that don’t use a license as these will be allocated 0.

I have not seen any UI for this yet, so I don’t know how this will look, but what the page is saying is that API-calls can be reallocated from normal users to application users/non-interactive users. (UPDATE – See update at the bottom regarding this, thank you observant readers!) Not sure if it will also be possible to reallocate API-calls between normal user and another normal user.

There will also be an additional SKU for buying 10 000 additional API calls per day that can be allocated to a user.

 

The Good

What is good about this then you might ask? Well, I think it is fair. Large customers pay a lot of money for their instances and usually use it a lot with a lot of integrations. It is only fair that they are allowed to use the API:s more than a small customer who has created some super duper application that blasts Dynamics with massive amounts of calls. The small customer can still do this, but they just have to pay a bit extra for those API-calls if they arn’t covering that with their users.
I also hope that this might enable Microsoft to relax the currently rather tight throttling on the API:s a bit.

According the the licensing documentation in general, existing customers will not be hit by this until October 2020, in other words, more than a year from now. This will hence probably only now affect new customers.

The bad

This implementation certainly has some bad parts. The most obvious is the too stringent connection to users which makes it weird. I don’t know how this will be managed in the UI but let’s say we have an instance with 500 users mixed Sales Enterprise, Customer Service Professional and Team Member. We also have 10 application users that are used for Portals, Forms Pro and custom integrations to many other systems. Each integration using a separate integration user to reduce the attack area in the unlikely event of a hacker attack. So what we will need to do is to first figure out how much API-usage we are using for all the normal users (for instance via PCF:s, Flows, Plugins, Workflows etc) and all the integration application users. Currently the https://admin.powerplatform.microsoft.com does not give us this granularity. There are indications but in this case one would need deep granualar data, preferably with trend analysis.

Another part of this that could be done better is the “buying addional API-calls”. Why not just adapt the method used in Azure? In other words, you pay as you go. With this current method, you have to know beforehand how much a particular user will use and if you overshoot the user will be shut down causing unnecessary support costs for customers, partners and Microsoft.

I also wonder how this practically is going to be handled? Are admins going to go into each of the 500 user records, reduce the API-calls allocated and move to Application users? If the admin moves all calls, which effectivly will stop plugins, workflows, javascripts with server calls etc how will the error handling of that look?

The Ugly

What is really the difference between something bad and something ugly? I would say that something bad is a design decision that we might dislike or might be disadvantage to the customers, it requires some sort of conscious perspective. Ugly on the other hand is the parts where where, in this case, Microsoft just have forgotten to think about something or neglected perspectives which causes issues for partners or customers. Based on this, I would say that the following are the bad aspects of this;

Timing

Again Microsoft are rolling out a change with a rather short timeframe. They probably feel that a month or two of notice by publishing the article above is notice enough, but they have to realize that many customers cannot act that fast. If you are a small customer with extensive use of Dynamics, for instance if you are using Dynamics 365 in a B2C aspect with a Marketing Automation integration and you are targeting millions of customers with sendouts and hits on your webpage being mirrored to your Dynamics all the time, this will cause some hefty API traffic. And your org might not be very big if you are totally e-commerce oriented.

Maybe only new customers, for now

Lastly I really hope that it is true that the API limitation will not affect current customers, it is not very clear and hence we are left in the dark again. If there is a problem with application users etc not being able to log in, I hope Microsoft support will be ready for the storm that will hit them.

On the other hand, new customers might have tested the system, evaluated the costs and are now faced with this. Not sure that will be optimal either, there is risk of loosing a customer or two there.

Communication

As this is a rather drastic change and may be viewed as a “breaking change” if not the one year grace period mentioned in the licensing in general applies to this. No matter, this should have been communicated very clearly months ahead to remove any kind of doubt from partners and customers. Both via blogs, emails to admins of organizations using Application users/non-interactive users as this should be easy to figure out via telemetry. Currently no one knows exactly when this will hit them/their customers or how they are to manage it.

 

This is generally very unclear. I shouldn’t have to write an article like this, speculating about what is or isn’t going to happen. If I have problems figuring this out, being an MVP, customers are probably very much in the dark, both existing and new.

 

Conclusion

In conclusion I think this is a good idea that got rushed. It should have been passed through a couple of more hoops before being launched to get the right feedback. The main things that I think Microsoft should change before rolling this out that, from my perspective, still give the same effect, are:

  1. Aggregate all API-Calls that are counted to a per instance level. It will make it easier to manage, stop the breaking change and make it easier to understand.
  2. Enable admins to add a per-use, after the fact, payment option, (like Azure) for any additional API-calls.

     

    If this is going to be useful or not also is very dependent on the fact that we can reallocate a lot of the API-calls from users to the integration users. For instance, I have a B2C customer with 1M+ API calls per 24/h and if it will not be possible to take the sum of hundreds of users and allocate those to the application users we are using, then this will be a very hurtful change.

    In the meantime, I do recommend that you keep a close eye to what is going on within this area as it will most likely affect you if you are running any application accounts, which you probably are, like Dynamics Portal, Forms Pro, Voice of the Customer and many more. If you go into the list of users and change view to “Application users” (or whatever it might be called in your language) you will see the list. I think Micrsoft will make some changes, or some announcements to this before October 1. Let’s see what.

Update 2019-09-04

There has been some chatter going around regarding this and do note the comments below which include interesting links and good thoughts. There are some additional points that need to be pointed out. Instead of changing the original article I will continue to add updates like these.

Normal UI usage will count

Initially I did not think that normal UI usage would count towards the API request calls. With “normal” in this case, as an old Dynamics 365/CRM geek, I of course mean a model driven App, but the same also goes for canvas Apps or actually any use of the CDS, what so ever. What this will mean when a user runs out of API requests, will be interesting to see. How many requests are used when the application is used, of course depends a lot on what you do. If you switch on F12 in Chrome you can check the network traffic and see for yourself.

Batching will be your friend

Using batching will from now on not only be a general best practice but also make you save money. If you use tools like Kingswaysoft this is easy to configure, to make sure that you have large batches when for instance doing CUD calls. When writing code directly, you will need to understand how to do this directly. Note that sometimes this will require entire rewrites of the code. I have seen programs off the shore of Orion that you wouldn’t believe with tons of single queries instead of one single call. Most often written by devs who have no or very little experience of writing code towards Dynamics 365/CDS.

Unclear if possible to move API-calls

As several people here and on Twitter have commented, it is probably incorrect to interpret that API:s can be moved from normal users to application users and non-interactive users. This will cause major headaches for some customers which will be struck with lots of additonal costs. Costs that are not very welcome as the per GB cost recently increased 800% hurting especially the larger customers with massive integrations and extensive use of the system. I do, for instance, have a customer that exceeds 1M requests per day 365 days a year. This would require them to buy over 100 addon 10k API requests SKU:s, despite the fact that their 500 users gives them a total of over 5M requests per day, something they will not be using through the UI unless someone is drinking very large amounts of coffee. – NEW Update: This was an incorrect interpretation. You cannot reallocate API calls from normal users. 

The price is here

The price for the 10k/24h SKU will be $50/month. This means that for a customer like mine having major integrations causing around 1M API-calls per day, this would cost an additional per month $5 000 or yearly $60 000. I sincerely hope they will relax the throttling to make it worth it. If/when they do, I will read my Macciavelli again.

 

Update 2019-09-05

First of all I will write a new blog article on this, when the dust settles and we know what is going on. Currently there are quite a lot of unknowns and I wouldn’t be surprised if Microsoft announced a thing or two soon. I have been told that the FAQ will be updated in a couple of days.

Batching – again

There were some discussions on if batching actually were going to be useful in this case or not. I have now gotten confirmed that a batched request will be considered as one (1) call. This is both for batched Creates/Updates/Deletes and Queries of multiple records (that would be very strange if it wasn’t one record, but I had to ask).

Data Export Service etc.

Data Export Service and other services that run under the system account will not count towards the API request. This is good news as this opens up for many users to be able to use this method to offload the API:s for reads.

What is the competition up to

I checked to see how SFDC are handling this and as far as I can see they have a similar setup as can be read here:

https://developer.salesforce.com/docs/atlas.en-us.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_api.htm

and here

https://support.geckoboard.com/hc/en-us/articles/216804218-I-ve-hit-my-Salesforce-API-request-limit

I am no expert on their licensing model, but I think it is good to know that this isn’t just a PowerPlatform thing. However, there are some distinct differences:

  1. The API calls are not counted for normal browser/client usage. Only “real” API calls.
  2. They have real enforcement blocking an entire instance/org if they overshoot
  3. All API:s per user license are summed up to the org level

Microsoft Addon apps will include request

If you buy Dynamics Portals, this will include some additional licenses. The same goes for Forms Pro. Hence there should be some default API request assignment to those application users that are installed. I do wonder if it would be financially beneficial to piggyback on those application users? There is also no current method for ISV:s to bundle API-requests into their product if they install an application user upon installation.

CSP / Distributor silence

We have still heard nothing of the 10k addon SKU from any distrubutor, EA or CSP. It will be interesting to see if it will reach the entire distribution chain by October 1 when customers will start being notified that they are in violation (new customers). 

Fast data management in a limited CDS world

Fast data management in a limited CDS world

In May 2019 Dynamics 365 CE/CDS enacted some new throttling mechanisms that have caused some headaches for anyone wanting to manage a lot of data in CDS (I will refer to Dynamics 365/CDS as just CDS below). There are several different throttles but the one that has cause me most trouble is the concurrency throttle. Kingswaysoft will release support for handling this in the next release and you can also request a special version from them if you ask nicely. In the meanwhile this post can give you some help on how to work as fast as possible using application user mulitplexing and a loop with a 5 min wait to make sure that the throttles are reset.

The new throttling on the main CDS API, as described here: https://docs.microsoft.com/en-us/dynamics365/customer-engagement/developer/api-limits needs to be carefully considered when doing heavy data manipulations in the CDS. One of my customers has a large system with numerous integrations of which the most data heavy are the Marketing Automation systems and the booking systems. And yes, this is Business to consumer.

With the new per GB pricing, keeping the database as small as possible has become an essential task and using the bulk delete just doesn’t work for large data loads, at the time of writing this article. I do hope that Microsoft increase the speed of it so that it does become more useful but currently its speed is somewhere around 1-2 records per second.

The bulk delete also has limitations on that it can only base it selections on a query, i.e. a FetchXML. Often this is not enough, for instance when you want to remove “All emails except those that have any connection to either a case or a contact which has a case”.

For these reasons I almost always opt for using SSIS with Kingswaysoft connectors to CDS when working with complex data management. This article will be on how to get some performance now that there is tougher throttling to take into consideration.

User multiplexing

As the throttling is measured on a “per user”, one trick is of course to use multiple users and spread the load over all these users. You can, of course use normal users, but that will cost you licenses so the smart person will of course use application users instead. If you don’t know how to create application users in Dynamics 365, check it out here: https://docs.microsoft.com/en-us/dynamics365/customer-engagement/admin/create-users-assign-online-security-roles#create-an-application-user . In the example below, I will be using four different application users, one as the source account and three as destinations. The reason for this is that it is typically easier to read several thousand rows per request, but seldom efficient to do batch creates/writes/deletes of more than 10-20.

To do this with SSIS/Kingswaysoft you should start by setting up the connections. In this case, the four CDS/CRM connections and use the OAuth auth-type like below. 

As you might want to have several packages in the same project and have them share the connections, it may be a good idea to use project connections. I also use an Azure SQL db for logging any errors. Previously I used to use CDS but now with the throttling, that is not such a good idea as the error itself might be throttling and hence the error can cause an error. Writing to some target that you know will not fail is hence a good idea for logging errors. When you are done with the connections, it should look something like this:

Now it is time to build the actual flow. If you’d normally have a Source and a Target, it will now look something like the image below, which I will explain.

First of all, the Premium Derived Column creates a new column which simply contains the row number. It will look something like this: 

I like to use the components that are available in the Productivity pack from Kingswaysoft, and this Premium Derived Column is one of these. In this case I think it is actually equal if you use IncrementalValue() or RowIndex(). I think you can create this logic with a normal Derived Column too, it just has less features.

Next we need to create a Conditional split that divides the rows evenly between the three destination components. This is done using the mathematical operator modulus which is written using the “%”-sign. For those that didn’t study this in school, it simple means “the rest” in a division. For instance 5%3=2, if you divide 5 by 3 you will get 1 and a rest of 2. What we will do, is assign RowNr%3 == 0 to Case 1, RowNr%3 == 1 to Case 2 and the rest to Case 3. That should divide them evenly. It looks like this: 

You then create the three destination components. I typically create one first, copy it and change it, as that is faster. Make sure that you set the Connection Manager to the three different Target Connections.

I also recommend that you fiddle a bit with the batch size and the number of threads and test out which gives the best results for you and the entity and action you are working on. There is no one answer here. I would typically start at Batch 10, Threads 16.

Tuning DataFlow property settings

If you back out to the Control Flow view and right click on the Data Flow you have created, there are some other interesting setting you can twirk.

DefaultBufferMaxRows – 10 000

DefaultBufferSize – 10 485 760 (10MB)

EngineThreads – 10

These can also be tuned to allow for the Data Flow to handle more rows, more memory and use more parallell threads which of course will make it faster (if that is the bottle neck, typically not when working with Dynamics)

What I have found is changing the maxrows to 100k, the buffer size to 100 MB and engine threads to 32 will not hurt but you can find several other blog articles specializing in SSIS that discuss this.

Crude throttle handler

What I have noticed is that many of my Dataflows simple seem to grind to a halt after 400-600k rows read from Dynamics. Not sure if it the read or write part that is causing this but what I figured is that probably the most pragmatic way of solving this would be to create a loop that runs a data flow that is limited in the number of records, typically 400k, wait 5 minutes then iterate. Smartest version is of course to have a control variable which checks to see when when there are no more rows and then breaks the loop, simpler version is to just loop n number of times to cover the amount of data you are trying to move, ie. number of rows per iteration x number of iterations. It would look something like the picture to the left.

If you would like to refine the loop a bit to make it more automatic, create a variable of type Int, for instance RowCount, set the initial value to be 10 or something different from 0. Then set the EvalExpression to “@RowCount > 0”. After this add a RowCounter control to the Data Flow and connect this to the variable RowCount. When the Data Flow runs and returns 0 rows, it will run to the end, the EvalExpression will evaluate to “False” which will cause it to break.

Using this technique, I am able to remove several million records in just a few hours. With one of these jobs I managed to remove 20 GB of structured data in less than two days (no attachments or similar, just records). By adding more application accounts and of course both to the source and particulary to the destination side, you can increase the speeds you are getting.

I do also advise you to be on the lookout for Kingswaysofts new version which I think will come soon, and do as I, make sure to always download both the Dynamics and Productivity Pack. I have read that there are great things coming to the productivity pack!